

EXEMPLAR

90167

901670

NEW ZEALAND QUALIFICATIONS AUTHORITY
MANA TOHU MĀTAURANGA O AOTEAROA

For Supervisor's use only

Level 1 Biology, 2007

90167 Describe plant processes

Credits: Four
9.30 am Tuesday 27 November 2007

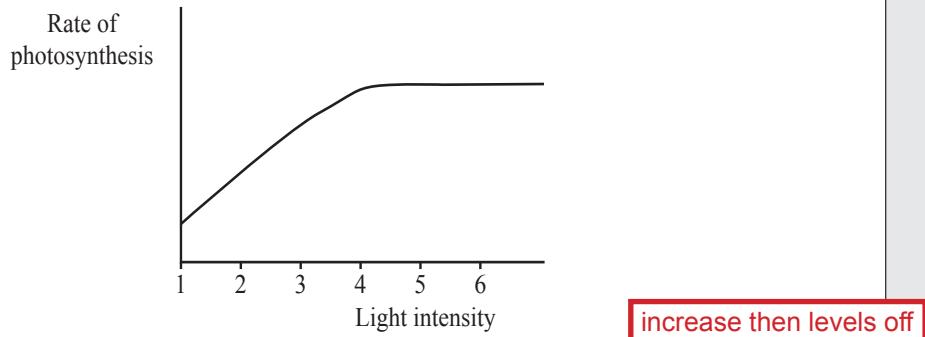
Check that the National Student Number (NSN) on your admission slip is the same as the number at the top of this page.

You should answer ALL the questions in this booklet.

If you need more space for any answer, use the page(s) provided at the back of this booklet and clearly number the question.

Check that this booklet has pages 2–10 in the correct order and that none of these pages is blank.

YOU MUST HAND THIS BOOKLET TO THE SUPERVISOR AT THE END OF THE EXAMINATION.


For Assessor's use only		Achievement Criteria		
Achievement		Achievement with Merit	Achievement with Excellence	
Describe biological ideas relating to the functioning of plant processes.	<input checked="" type="checkbox"/>	Explain biological ideas relating to the functioning of a plant process.	<input type="checkbox"/> -	Discuss biological ideas relating to the functioning of a plant process.
Overall Level of Performance				A

You are advised to spend 50 minutes answering the questions in this booklet.

Assessor's
use only

QUESTION ONE

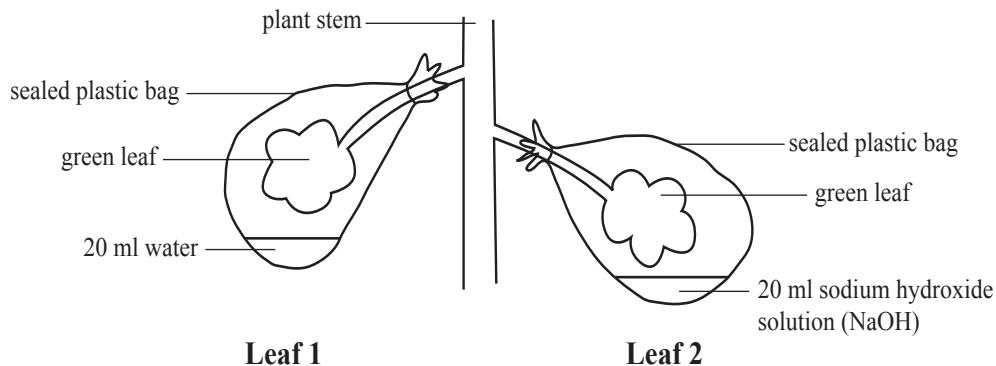
(a) **Describe** the relationship between light intensity and the rate of photosynthesis as shown in the graph below.

As light Intensity increases the rate of photosynthesis increases only up to a point. After this point the Rate of photosynthesis will remain the same because ① chloroplast ^{max} absorbs sunlight ② CO_2 content acting as a limiting factor //

(b) The leaves of plants normally have a green colour due to the presence of chlorophyll.

A

Describe the function of chlorophyll in the leaf.


The function of chlorophyll in the leaf is to provide the green colour to the plants. It is also one of the main materials that is needed for the process of photosynthesis //

N

- green colour of leaf
- no light absorption

In an investigation of photosynthesis, leaves of a destarched plant were treated as shown below, and the plant left in a sunny place for 2 days.

Assessor's
use only

After two days an iodine test on both leaves gave the following results:

(c) Explain these results in terms of photosynthesis.

Leaf 1 photosynthesis
produced starch.

These results show that Leaf 1 ~~had~~ went through the process of photosynthesis and produces starch. This is shown by the iodine test. The leaf ~~had~~ ^{had} starch because it had all the raw materials for photosynthesis. Leaf 2 went brown because no starch was produced because it did not have all the raw material for the process of photosynthesis.

Leaf 2 no starch

no NaOH absorbs CO₂,
so no photosynthesis therefore no starch
so no M

A

QUESTION TWO

Assessor's
use only

The diagram below shows the internal structure of a leaf.

Adapted from V. Slaughter, *Living Things* (London: Hodder & Stoughton, 1980), p 30.

Explain how TWO features of a leaf allow it to carry out photosynthesis.

In the palisade mesophyll layer, palisade cells
are tightly packed ~~with~~ ^{to} each other. Thus ~~they~~
the chloroplasts can ~~are~~ absorb max sunlight
as possible. The stoma cells control the
intake of water, CO_2, O_2 . [water + CO_2 needed
for photosynthesis] Stoma cells can become
turgid and flaccid depending on the intake
of water.

N

- palisade tightly packed but needed to say contains lots of chloroplasts
- stoma cells control intake of water
- CO_2 yes.
- O_2 no (photosynthesis not respiration)

QUESTION THREEAssessor's
use only

Plants need enough nitrogen for healthy growth. The diagram shows a plant that has grown in soil that did not have enough nitrogen in it.

*For copyright reasons, this
resource cannot
be reproduced here.*

Rogers and Poletti, *Year 11 Biology Workbook* (Hamilton: ABA Books, 2004), p 20.

Explain how plants use nitrogen for healthy growth.

Plants use nitrogen, ^{for their} plants health. Meaning without nitrogen the plant will not survive at its best.

N

no mention of nitrogen needed to make proteins/chlorophyll

QUESTION FOURAssessor's
use only

Different plant structures are built from specialised groups of plant cells called tissues. Each plant structure is made up of tissues designed to carry out specialised functions or processes.

The diagram shows the arrangement of plant tissues in a dicotyledon stem.

*For copyright reasons, this resource cannot
be reproduced here.*

Don Bramley, *Yates Guide to Horticulture* (Auckland: Heinemann, 1987), p 22.

(a) Each year the stem will grow thicker by secondary thickening.

Explain how the stem grows thicker.

A set of cells grows between the vascular bands called cambium. This layer produces secondary xylem and secondary phloem that increases the thickness of the stem.

no mention of cambium dividing to produce new xylem and phloem

N

(b) Plant growth at the shoot tips and the root tips shows some similarities and some differences.

Assessor's
use only

Discuss reasons for the similarities and the differences in the way plants grow at the shoot tips compared with the root tips.

For copyright reasons, this resource cannot be reproduced here.

Rogers and Poletti, *Year 11 Biology Workbook* (Hamilton: ABA Books, 2004), p 14.

The main similarity between the shoot tip and root tip is that they both contain a layer of meristem. A place where a number of cell division occurs to increase the number of cells, increasing size length of stem / root where ever the ^{the} ~~the~~ ^{cells} grow they go through these process division \rightarrow enlargement and specialization. That is why.

The reason for the similarities and differences in way plants grow at the shoot tip compared with the root tips are

- ① The root have different function
- compared to the shoot

- has cell division for growth
- doesn't go on to talk about why: roots toward water, shoots toward light, etc

A

QUESTION FIVE

Assessor's
use only

Some plants can reproduce both sexually and asexually.

(a) Describe an advantage to a plant of sexual reproduction.

~~The~~ An advantage is that the plant causes ^{new} variation. Thus if the environmental condition goes for the worst. The new plant has a chance of survival.

A

(b) Describe THREE ways that seeds are dispersed.

The seed can be dispersed -

mechanism

① ~~Fleshy fruit make animal eat it thus transfer to a different place via the animal anus.~~

② By wind

no mechanism

③ By water

no mechanism

(c) Explain how the dispersal of seeds can increase plant survival.

N

The dispersal of seed increases the plant survival by spreading them over the place and not all plant at the same place competing for resources.

~~Thus~~ By spreading they have a chance to reach a better habitat than before.

A

In sexual reproduction in flowering plants, some flowers are pollinated by insects and some are pollinated by the wind. Below are diagrams of an insect-pollinated flower and a wind-pollinated flower.

Assessor's
use only

<p>For copyright reasons, this resource cannot be reproduced here.</p> <p>insect-pollinated flower</p>	<p>For copyright reasons, this resource cannot be reproduced here.</p> <p>wind-pollinated flower</p>	<p>Annotation Key I = Insect W = Wind see assessment schedule</p>
--	--	--

V. Slaughter, *Living Things* (London: Hodder & Stoughton, 1980), p 150.

(d) Discuss how the features of the flower allow pollination to occur in wind-pollinated flowers compared to insect-pollinated flowers.

The flower are not colourful.

In the ~~insect~~ wind pollinated flowers
the Stigmas is feathery and hang loose
this increases the surface area the
of pollen ~~so~~ something can attach to it. The
Anthers hang loose as well, thus can
be pushed by wind and releasing the
pollen. The pollen are not that sticky
as it would be in ~~insect~~ pollinated flowers
they are dry so that they do not attach
to obstacles when flying. Insect pollinated
flowers are big and conspicuous thus
to attract insects for pollination [trough
of pollen]. They are scented to attract insects
as well. These pollen are sticky ^{so that the}
attach to the insects body for pollination
except

feature
why W

feature
why W

M

feature why I